TitleThe Gibraltar subduction: A decade of new geophysical data
Publication TypeJournal Article
Year of Publication2012
AuthorsGutscher M.-A., Dominguez S., Westbrook G.K., Le Roy P., Rosas F., Duarte J.C., Terrinha P., Miranda J.M., Graindorge D., Gailler A., Sallarès V., Bartolome R.
Date Publishedoct
KeywordsAccretionary wedge, Active deformation, earthquakes, Iberia, Roll-back subduction, Tethys oceanic lithosphere
AbstractThe Gibraltar arc, spans a complex portion of the Africa-Eurasia plate boundary marked by slow oblique convergence and intermediate and deep focus seismicity. The seemingly contradictory observations of a young extensional marine basin surrounded by an arcuate fold-and-thrust belt, have led to competing geodynamic models (delamination and subduction). Geophysical data acquired in the past decade provide a test for these models and support a narrow east-dipping, subduction zone. Seismic refraction studies indicate oceanic crust below the western Gulf of Cadiz. Tomography of the upper mantle reveals a steep, east-dipping high P-wave velocity body, beneath Gibraltar. The anisotropic mantle fabric from SKS splitting shows arc-parallel "fast directions", consistent with toroidal flow around a narrow, westward retreating subducting slab. The accompanying WSW advance of the Rif-Betic mountain belt has constructed a thick pile of deformed sediments, an accretionary wedge, characterized by west-vergent thrust anticlines. Bathymetric swath-mapping images an asymmetric embayment at the deformation front where a 2. km high basement ridge has collided. Subduction has slowed significantly since 5. Ma, but deformation of recent sediments and abundant mud volcanoes suggest ongoing activity in the accretionary wedge. Three possible origins for this deformation are discussed; gravitational spreading, overall NW-SE convergence between Africa and Iberia and finally a WSW tectonic push from slow, but ongoing roll-back subduction. In the absence of arc volcanism and shallow dipping thrust type earthquakes, evidence in favor of present-day subduction can only be indirect and remains the object of debate. Continued activity of the subduction offers a possible explanation for great (M. >. 8.5) earthquakes known to affect the area, like the famous 1755 Great Lisbon earthquake. Recent GPS studies show SW motion of stations in N Morocco at velocities of 3-6. mm/yr indicating the presence of an independent block, a "Rif-Betic-Alboran" microplate, situated between Iberia and Africa. © 2012 Elsevier B.V.