@article {Giaconia2015, title = {{Compressional tectonic inversion of the Algero-Balearic basin: Latemost Miocene to present oblique convergence at the Palomares margin (Western Mediterranean)}}, journal = {Tectonics}, volume = {34}, number = {7}, year = {2015}, month = {jul}, pages = {1516{\textendash}1543}, keywords = {10.1002/2015TC003861 and Active tectonics, Abubacer anticline, multichannel seismics, Palomares fault zone, Tectonic inversion, Western Mediterranean}, issn = {02787407}, doi = {10.1002/2015TC003861}, url = {http://doi.wiley.com/10.1002/2015TC003861}, author = {Giaconia, Flavio and Booth-Rea, Guillermo and Ranero, C{\'e}sar R and Gr{\'a}cia, Eul{\`a}lia and Bartolom{\'e}, Rafael and Calahorrano, Alcinoe and Lo Iacono, Claudio and Vendrell, Montserrat G and Cameselle, Alejandra L and Costa, Sergio and G{\'o}mez de la Pe{\~n}a, Laura and Mart{\'\i}nez-Loriente, Sara and Perea, Hector and Vi{\~n}as, Marina} } @article {Hensen01042015, title = {{Strike-slip faults mediate the rise of crustal-derived fluids and mud volcanism in the deep sea}}, journal = {Geology}, volume = {43}, number = {4}, year = {2015}, pages = {339{\textendash}342}, abstract = {We report on newly discovered mud volcanoes located at \~{}4500 m water depth \~{}90 km west of the deformation front of the accretionary wedge of the Gulf of Cadiz, and thus outside of their typical geotectonic environment. Seismic data suggest that fluid flow is mediated by a >400-km-long strike-slip fault marking the transcurrent plate boundary between Africa and Eurasia. Geochemical data (Cl, B, Sr, 87Sr/86Sr, $δ$18O, $δ$D) reveal that fluids originate in oceanic crust older than 140 Ma. On their rise to the surface, these fluids receive strong geochemical signals from recrystallization of Upper Jurassic carbonates and clay-mineral dehydration in younger terrigeneous units. At present, reports of mud volcanoes in similar deep-sea settings are rare, but given that the large area of transform-type plate boundaries has been barely investigated, such pathways of fluid discharge may provide an important, yet unappreciated link between the deeply buried oceanic crust and the deep ocean.}, doi = {10.1130/G36359.1}, url = {http://geology.gsapubs.org/content/43/4/339.abstract}, author = {Hensen, Christian and Scholz, Florian and Nuzzo, Marianne and Valadares, Vasco and Gr{\'a}cia, Eul{\`a}lia and Terrinha, Pedro and Liebetrau, Volker and Kaul, Norbert and Silva, Sonia and Mart{\'\i}nez-Loriente, Sara and Bartolom{\'e}, Rafael and Pi{\~n}ero, Elena and Magalh{\~a}es, Vitor H and Schmidt, Mark and Weise, Stephan M and Cunha, Marina and Hilario, Ana and Perea, Hector and Rovelli, Lorenzo and Lackschewitz, Klas} } @booklet {Ranero2014, title = {{The Western Mediterranean Pairs of Basin and Arc Systems}}, year = {2014}, month = {feb}, publisher = {Sociedad Geol{\'o}gica de Espa{\~n}a}, abstract = {Ranero, C{\'e}sar R. ... et. al.{\textendash} VIII Congreso Geol{\'o}gico de Espa{\~n}a, 2012, Oviedo}, isbn = {http://hdl.handle.net/10261/92021}, url = {http://digital.csic.es/handle/10261/92021}, author = {Ranero, Cesar R. and Gr{\'a}cia, Eul{\`a}lia and Sallares, Valenti and Garcia, Xavier and Gallart Muset, Josep and Bartolom{\'e}, Rafael and Lo Iacono, Claudio and Martinez-Loriente, S. and Moreno, Ximena and Prada, Manel and Perea, Hector and Zitellini, N.} } @article {Martinez-Loriente2013, title = {{Active deformation in old oceanic lithosphere and significance for earthquake hazard: Seismic imaging of the Coral Patch Ridge area and neighboring abyssal plains (SW Iberian Margin)}}, journal = {Geochemistry, Geophysics, Geosystems}, volume = {14}, number = {7}, year = {2013}, month = {jul}, pages = {2206{\textendash}2231}, abstract = {Recently acquired high-resolution multichannel seismic profiles together with bathymetric and sub-bottom profiler data from the external part of the Gulf of Cadiz (Iberia-Africa plate boundary) reveal active deformation involving old (Mesozoic) oceanic lithosphere. This area is located 180 km offshore the SW Iberian Peninsula and embraces the prominent NE-SW trending Coral Patch Ridge, and part of the surrounding deep Horseshoe and Seine abyssal plains. E-W trending dextral strike-slip faults showing surface deformation of flower-like structures predominate in the Horseshoe Abyssal Plain, whereas NE-SW trending compressive structures prevail in the Coral Patch Ridge and Seine Hills. Although the Coral Patch Ridge region is characterized by subdued seismic activity, the area is not free from seismic hazard. Most of the newly mapped faults correspond to active blind thrusts and strike-slip faults that are able to generate large magnitude earthquakes (Mw 7.2-8.4). This may represent a significant earthquake and tsunami hazard that has been overlooked so far. Key Points New active structures have been mapped in the Coral Patch Ridge area The newly mapped faults are able to generate large magnitude earthquakes (Mw>7) These new structures may represent a significant earthquake and tsunami hazard {\textcopyright}2013. American Geophysical Union. All Rights Reserved.}, keywords = {blind thrusts, fault-bend folds, Iberia-Africa boundary, multichannel seismics, seismic hazard assessment, strike-slip faults}, issn = {15252027}, doi = {10.1002/ggge.20173}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84883575301\&partnerID=tZOtx3y1}, author = {Mart{\'\i}nez-Loriente, Sara and Gr{\'a}cia, Eul{\`a}lia and Bartolom{\'e}, Rafael and Sallares, Valenti and Connors, Christopher and Perea, Hector and Lo Iacono, Claudio and Klaeschen, Dirk and Terrinha, Pedro and Da{\~n}obeitia, Juan Jos{\'e} and Zitellini, Nevio} } @booklet {Bartolome2013, title = {{Seismic imaging of active faults in the Southern Alboran Sea (SE Iberian Margin): First results of the 2010 EVENT-DEEP cruise}}, year = {2013}, month = {sep}, abstract = {Primera Reuni{\'o}n Ib{\'e}rica sobre Fallas Activas y Paleosismolog{\'\i}a. Sig{\"u}enza (Guadalajara, Espa{\~n}a) 27, 28 y 29 de Octubre de 2010.{\textendash} 4 pages, 4 figures}, isbn = {isbn: 978-84-693-6088-0}, url = {http://digital.csic.es/handle/10261/82462}, author = {Bartolom{\'e}, Rafael and Gr{\'a}cia, Eul{\`a}lia and Lo Iacono, Claudio and Martinez-Loriente, S. and Moreno, Ximena and Perea, Hector and Masana, E. and Team, EVENT-DEEP} } @article {Perea2009, title = {{The Catalan seismic crisis (1427 and 1428; NE Iberian Peninsula): Geological sources and earthquake triggering}}, journal = {Journal of Geodynamics}, volume = {47}, number = {5}, year = {2009}, month = {may}, pages = {259{\textendash}270}, abstract = {The Catalan seismic crisis of the years 1427 and 1428 is one of the most destructive seismic episodes that happened in the northeastern Iberian Peninsula in historical times. The main earthquakes of this crisis occurred on March 19th 1427 in the zone around Amer (IEMS-98 = VIII), May 15th 1427 in the vicinity of Olot (IEMS-98 = VIII) and on February 2nd 1428 in the area close to Camprodon (IEMS-98 = IX). There is much evidence that the Amer fault produced the first two events of this crisis, but is still uncertain which fault generated the earthquake on February 2nd 1428. Using newly available macroseismic data, the earthquake area sources of the three main earthquakes of the crisis have been obtained and they corroborate that the Amer fault may be the origin of the first two events. However, the area source corresponding to the last earthquake of the crisis cannot be associated to a single fault and indicates three possible candidates: the Vallfogona and Ribes-Camprodon thrusts and the Amer normal fault. Modeling of the Coulomb failure stress transfer has been performed to help determine the best candidate responsible for the February event. The results of the modeling points to: (a) a triggering relationship between the three main events of the crisis and (b) the Amer fault, or a similar extensional fault close and parallel to it, as the most probable origin of the earthquake on February 2nd 1428. {\textcopyright} 2009 Elsevier Ltd. All rights reserved.}, keywords = {Catalan seismic crisis, Coulomb failure stress transfer, Earthquake triggering, Historical earthquakes, Seismogenic faults}, issn = {02643707}, doi = {10.1016/j.jog.2009.01.002}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-62049083381\&partnerID=tZOtx3y1}, author = {Perea, Hector} } @article {MonteiroSantos2009, title = {{Using tensorial electrical resistivity survey to locate fault systems}}, journal = {Journal of Geophysics and Engineering}, volume = {6}, number = {4}, year = {2009}, month = {dec}, pages = {390{\textendash}400}, abstract = {This paper deals with the use of the tensorial resistivity method for fault orientation and macroanisotropy characterization. The rotational properties of the apparent resistivity tensor are presented using 3D synthetic models representing structures with a dominant direction of low resistivity and vertical discontinuities. It is demonstrated that polar diagrams of the elements of the tensor are effective in delineating those structures. As the apparent resistivity tensor shows great inefficacy in investigating the depth of the structures, it is advised to accomplish tensorial surveys with the application of other geophysical methods. An experimental example, including tensorial, dipole-dipole and time domain surveys, is presented to illustrate the potentiality of the method. The dipole-dipole model shows high-resistivity contrasts which were interpreted as corresponding to faults crossing the area. The results from the time domain electromagnetic (TEM) sounding show high-resistivity values till depths of 40-60 m at the north part of the area. In the southern part of the survey area the soundings show an upper layer with low-resistivity values (around 30 ${\O}mega$ m) followed by a more resistive bedrock (resistivity >100 ${\O}mega$ m) at a depth ranging from 15 to 30 m. The soundings in the central part of the survey area show more variability. A thin conductive overburden is followed by a more resistive layer with resistivity in the range of 80-1800 ${\O}mega$ m. The north and south limits of the central part of the area as revealed by TEM survey are roughly E-W oriented and coincident with the north fault scarp and the southernmost fault detected by the dipole-dipole survey. The pattern of the polar diagrams calculated from tensorial resistivity data clearly indicates the presence of a contact between two blocks at south of the survey area with the low-resistivity block located southwards. The presence of other two faults is not so clear from the polar diagram patterns, but their location can be afforded combining tensorial, dipole-dipole and TEM results. {\textcopyright} 2009 Nanjing Institute of Geophysical Prospecting.}, keywords = {3D modelling, Fracturation, Macroanisotropy, Tensorial resistivity}, issn = {1742-2132}, doi = {10.1088/1742-2132/6/4/007}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-72449138142\&partnerID=tZOtx3y1}, author = {Monteiro Santos, Fernando A and Perea, Hector and Massoud, Usama and Plancha, Jo{\~a}o P and Marques, Jorge and Cabral, Jo{\~a}o} }