@conference {Buffett2013, title = {{Characterization of thermohaline staircases in the Tyrrhenian Sea using stochastic heterogeneity mapping}}, booktitle = {Proceedings of Meetings on Acoustics}, volume = {19}, year = {2013}, pages = {005013{\textendash}005013}, abstract = {Processed multi-channel seismic (MCS) data acquired in the Tyrrhenian Sea in April-May 2010 provide images of oceanic thermohaline staircases. Using Stochastic Heterogeneity Mapping we characterize spatial reflector variations. This method is based on the band-limited von K{\'a}rm{\'a}n function. For scale sizes smaller than the correlation length, the von K{\'a}rm{\'a}n model describes a power law (fractal) process. We are most interested in the extraction of the exponent in the power law (The Hurst exponent) because it allows us to characterize the richness of scales present in the data set. Lower Hurst exponents represent a richer range of wavenumbers and therefore correspond to a broader range of heterogeneity in the observed seismic reflection events. The Hurst exponent is related to the fractal dimension and to the slope in the Garrett-Munk wavenumber spectrum. We interpret a richer range of heterogeneity as indicative of a greater degree of turbulent mixing. Data are presented alongside benchmark calibrations of synthetic seismic data generated from random fractal surfaces. We observe an oscillation in the Hurst exponent spectra as a function of frequency that is interpreted to represent a preferential coupling of energy across different spatial scales. {\textcopyright} 2013 Acoustical Society of America.}, issn = {1939800X}, doi = {10.1121/1.4799057}, url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84878961126\&partnerID=tZOtx3y1}, author = {Buffett, Grant G. and Hobbs, Richard W. and Vsemirnova, Ekaterina A. and Klaeschen, Dirk and Hurich, Charles A. and Ranero, César and Sallarès, Valentí} }